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Abstract. The paper describes a classification method of multidimensional sig-
nals, based upon a dissimilarity measure between signals. Each new signal is
compared to some reference signals through a conjoint dynamic time warping
algorithm of their time features series, of which proposed cost function gives out
a normalized dissimilarity degree. The classification then consists in presenting
these degrees to a classifier, like k-NN, MLP or SVM. This recognition scheme
is applied to the automatic estimation of the Phytoplanktonic composition of a
marine sample from cytometric curves. At present, biologists are used toa man-
ual classification of signals, that consists in a visual comparison of Phytoplank-
tonic profiles. The proposed method consequently provides an automaticprocess,
as well as a similar comparison of the signal shapes. We show the relevance of
the proposed dissimilarity-based classifier in this environmental application, and
compare it with classifiers based on the classical DTW cost-function and also
with features-based classifiers.

1 Introduction

The survey of marine ecosystem is a major current concern in our society since its im-
pact is essential for many domains: ecology (biodiversity,production, survey), climate,
economy (tourism, resources control, transport). In 2000,Directive DCE adopted by
the European Parliament [1] defines the Phytoplankton as a biologic factor for marine
quality assessment. In this context, we propose an automatic dissimilarity-based classi-
fication method designed to assess the marine water quality by Phytoplankton species
classification and counting.

The available signals are fluorescence and scatter parameter scans of each parti-
cle detected by a flow cytometer in a marine sample. So our problem comes down to
the classification of multidimensional signals, whose shape profile is class-specific. Up
to date, this classification is made by visual comparison of the obtained profiles and
references ones, or by the inverted microscope method [2][3]. The major difficulty of



discrimination task is that Phytoplankton is a live vegetalspecies. So its internal struc-
ture (pigments, size, nucleus position) varies according to its belonging group but also
and above all according to its physiological condition (life cycle, cell or colony) and its
environment [4][5]. To make a Phytoplankton classifier system robust to these variabil-
ities, it appears relevant to use an elastic measure to compare two signal profiles. So
our approach is based on a classical elastic matching from Sakoe and Chiba (Dynamic
Time Warping DTW [6]). This method was largely tested, initially for speech recogni-
tion (comparison of 1D time-frequency amplitude patterns)or for handwritten pattern
recognition (1D spatial matching) [7].

In order to get a more understandable qualitative measure, simple and comprehen-
sible for any biologist, we adapt the matching cost of this algorithm so as to get a
[0,1]-normalized dissimilarity degree that deals with multidimensional time signals.

Fig. 1.Scheme of the recognition system for Phytoplanctonic cells

Figure 1 presents the global scheme of the recognition system based on a dissimilar-
ity measure applied to Phytoplankton characterization. Itis composed of two classical
parts:

1. a feature-like extraction module which computes for the unknown cell a dissimilar-
ity vector in relation to some reference cells;

2. a standard classifier which takes in entry this vector and gives in output the recog-
nized species name.

Next section describes the proposed accomodation of Sakoe and Chiba’s algorithm
to get a [0,1]-dissimilarity degree between nD signals. Section 3 presents the exper-
imentation protocol and results that show the efficiency of the system with different
classifiers. Different variants are tested and compared first with features-based classi-
fiers, then with classical DTW algorithm, in term of recognition rate.



2 Dissimilarity measure for multidimensional signals by conjoint
elastic matching

2.1 Comparison of two 1D signals by the classical methodDynamic Time
Warping

Dynamic Time Warping(DTW) method proposed by Sakoe and Chiba [6] gives a dis-
tance measure for two time series, whose lengths are not necessarily equal. This mea-
sure represents the quantity of geometrical distortion needed to match both curves, re-
gardless of some time distortions.

More precisely, the method matches the points of both signals, and defines their
matching cost as the mean-distance between the paired points. For example, in the
ideal case where all paired points are identical, the matching is perfect, and the cost
is consequently zero. The softness of the algorithm comes from its ability to pair some
points time shifted, with a cost equal to zero.

Let X = {(xi), i = 1, . . . ,nx} andY = {(y j), j = 1, . . . ,ny} be the two signals to be
compared, withi and j their time index, andnx andny their respective length. We first
consider monodimensional signals: each valuexi or y j belongs toℜ.

The algorithm builds a matchingP = {(ik, jk),k = 1, . . . ,nk} between the points of
signalsX andY, according to some time conditions. The resulting matchingis defined
as the one minimizing the following weighted mean distanceC between paired points,
based upon some distanced and a weight vectorW:

C(X,Y,P,W) =
∑nk

k=1d(xik,y jk).w(k)

∑nk
k=1w(k)

=
Dist(X,Y,P,W)

∑nk
k=1w(k)

. (1)

Selected conditions of the pairing in this DTW variant are the following:

1. End-Points conditions: first (and last) points of both signals are paired:(1,1) ∈ P
(and(nx,ny) ∈ P);

2. Continuity conditions: all points are matched;
3. Monotonicity conditions: pairs are time ordered:ik−1 ≤ ik and jk−1 ≤ jk.

According to these conditions, each possible pairing may berepresented as a path
in the bidimensional space of the pairs{(i, j), i = 1, . . .nx, j = 1, . . .ny}, i.e. the full set
of the possible pairs of points ofX andY. The algorithm then backtracks the optimal
matching, going from initial pair(1,1) to final pair(nx,ny) (condition 1) that minimizes
the costC.

Sakoe and Chiba showed that costC can only be optimized by dynamic program-
ming if denominator∑nk

k=1w(k) does not depend from matchingP. This may be obtained
by letting the weigth sum equal tonx +ny, nx or ny, for example.

Considering that the weights verify this condition, then anoptimal path is a path
which minimizes the accumulated distanceDist.

If the optimal paths leading to pairs(i−1, j), (i, j−1) and(i−1, j−1) are supposed
to be known, then the optimal path leading to pair(i, j) may easily be defined as the
one of the three previous paths whose cost is minimal, followed by pair(i, j). Its cost
Dist may be computed in the same way. Now, the optimal paths to the pairs(1, . . .) and



(. . . ,1) are known thanks to conditions 2 and 3. Then, a recursive optimization is used
to compute the path corresponding to the best matching between signalsX andY, as
well as its costDist. In practice, it consists in sequentially computing the(nx,ny)-sized
matrix of costsDist(i, j), which measures the minimal cost of the path leading to pair
(i, j). The final cost is consequently and directly obtained in the last element(nx,ny) of
the matrix.

Here is given the part of the algorithm DTW (cf. Algorithm 1) allowing a quick
computation of costC of the optimal path. The path itself may then be retrieved follow-
ing the way the least cost was computed, from last pair(nx,ny) to first pair(1,1). This
is generally used to normalize final costDist(nx,ny), so as to get the mean distortion
measure by matched pair.

In order to get the accumulated distanceDist minimization equivalent to the costC
minimization, the weigths are defined according to thesymetricsolution proposed by
Sako and Chiba. Let(ik, jk) be thek-th pair of matchingP:

– w(k) = 2, if k = 1 or if (i(k−1), j(k−1)) = (ik−1, jk−1);
– w(k) = 1, otherwise.

Then∑nk
k=1w(k) = nx+ny does not depend onP, and optimizingDist(nx,ny) makes

C optimized too.

Algorithm 1 DTW algorithm computing the accumulated distance of the best matching
Dist(1,1) = 2.d(xi ,y j )
for all i = 2, . . . ,nx do

Dist(i,1) = Dist(i−1,1)+d(xi ,y1)
end for
for all j = 2, . . . ,ny do

Dist(1, j) = Dist(1, j −1)+d(x1,y j )
end for
for all i = 2, . . . ,nx do

for all j = 2, . . . ,ny do
Dist(i, j) = min

{

Dist(i−1,1)+d(xi ,y j ),Dist(i, j −1)+d(xi ,y j ), . . .
. . . ,Dist(i−1, j −1)+2.d(xi ,y j )

}

end for
end for
return Dist(nx,ny)

2.2 Neighborhood restrictions of DTW algorithm

The previous version of DTW algorithm allows extremely softmatchings without pen-
alty: the first point of a signal may indeed be matched to the last point of the other one.
This is an extreme distortion, that may be avoided by narrowing the possible matched
points thanks to a limited time window.



The strictest restriction consists in making each point of the longest signal - denoted
X - possibly paired to a unique point of the other signal - denotedY: the time nearest,
once the length of the curves are fitted. This is a ”linear” DTW:

P =

{

(i, j∗i ); i ∈ {1, . . . ,nx}, j∗i = E

(

1+
(i −1)

(nx−1)
(ny−1)

)}

, (2)

whereE denotes the round function.
In this particular case, the distortion is global: the one which fits the duration of

both signals. No optimization is required to get the distortion cost.
In order to allow local time distortion, a less restrictive version could be prefered,

which limits the matchings through a time window. Its size may be defined as a ratiop
of the whole duration:

∀(i, j) ∈ P, (i, j) ∈ {(i, j i); i ∈ {1, . . . ,nx}, j i ∈ [ j∗i − p.ny, j∗i + p.ny]} , (3)

where j∗i denotes the indice defined in the previous linear matching.

2.3 Dissimilarity measure of positive signals

The cost function provided by DTW is a relative measure, which can not be easily
interpreted by itself: it is a mean distance, which depends on the intensities of both
signals. In order to make the response similar to the one of a human expert, we prefer
a bounded measure of dissimilarity, between 0 and 1. We then propose to replace the
distanced with a dissimilaritys, built as a ratio of distances:

s(xik,y jk) =
d(xik

,y jk
)

max{d(xik
,0),d(y jk

,0)}
. (4)

In order to make this ratio consistent, we suppose the signals to be positive, otherwise
the dissimilarity degree could exceed 1.

Using this measure, the cost functionC becomes a mean dissimilarity between
paired points, and consequently a global dissimilarity measure for signals.

2.4 Conjoint elastic matching of nD signals

We now consider nD signals̄X = {(x̄i), i = 1, . . . ,nx} and Ȳ = {(ȳ j), j = 1, . . . ,ny},
whose all time measures ¯xi = {(xic),c= 1, . . . ,nc} andȳ j = {(yic),c= 1, . . . ,nc} belong
to (ℜ+)nc. To sum up, each nD signal consists ofnc monodimensional positive signals,
identically sampled.

In the classical DTW, we simply consider a Manhattan distance measure:

d(x̄i , ȳ j) =
nc

∑
c=1

dL1(xic,yic), (5)

with dL1 theL1-distance. The choice consists in accumulating the distortion measures
over thenc curves.

In our dissimilarity version of DTW, we accumulate dissimilarity measures instead
of L1-distances for thenc positive curves, and we then normalize the result:

s(x̄i , ȳ j) =
1
nc

nc

∑
c=1

s(xic,yic). (6)



2.5 Matching visualizations

In order to visualize the quality of DTW matching for two 1D signals, both signals
are usually plotted on the same figure, while paired points are connected with a seg-
ment. The weakness of this technique is that it does not help to assess the dissimilarity
between the signals.

Then, we propose an other way to visualize both signalsX andY. Each point of
pair(ik, jk),k∈ {1, . . . ,nk} of the optimal matchingP is represented by a bidimensional
point x̂k (or ŷk). The set of pairs is totally ordered, then X-axis values of points x̂k and
ŷk are set tok, following this time order. Y-axis values simply are the 1D measuresxik
andy jk, then:

x̂k = (k,xik) ; ŷk = (k,y jk). (7)

Plotting points this way makes easier the perception of the distances or dissimilarities
accumulated over the pairs ofP, because they are directly measured along the Y-axis.
Moreover time distortions are visualized. Note that we useddotted lines to differentiate
the time distortions from any initial constant part of the curves.

Figure 2 shows the comparison of two artificial 1D curves according to the variants
of DTW algorithm previously described; results are presented as follows:

– two columns: left, Sakoe and Chibas’s original algorithm; right, our variant with a
bounded dissimilarity degree;

– three couples of rows, for the different ways of limiting theneighborhood: first the
”linear”, then the ”p-restricted”, and finally the ”no-restricted” variant. Results are
presented in the classical way, then in the way we propose.

Matchings visualized in Figure 2 show how similar both typesof algorithms are,
either distance or dissimilarity oriented: the only significative difference appears in the
costs, normalized in [0,1]. Furthermore this example attests the role of the neighborhood
restriction, that allows limitation of the time distortions.

3 Application to the Phytoplanktonic species identification

3.1 Data presentation

ND signals acquisition. In this study, nD signals were gathered in the LOG laboratory1

from different phytoplanktonic species living in Eastern Channel, with a CytoSense
flow cytometer (CytoBuoy2), and labelled by biologists [3], once having them isolated
from the natural environment.

Flow cytometry is a technique used to characterize individual particles (cells or
bacteria) drived by a liquid flow at high speed in front of a laser light (cf. Figure 3).
Different signals either optical or physical are provided:forward scatter (which reflects
the particle length), sideward scatter (which is more dependant on the particle internal
structure) and several wavelengths of fluorescence (which depend upon the type of its
photosynthetic pigments) measures.

1 Laboratoire d’Oćeanologie et de Ǵeosciences, UMR 8187:http://log.univ-littoral.fr
2 Cytobuoy system:http://www.cytobuoy.com
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Fig. 2.Different DTW variants applied to two artificial 1D signals

More precisely, in the used signals library, each detected particle is described by 8
monodimensional raw signals issued from the flow cytometer in identical experimental
conditions (same sampling rates, same detection threshold, etc.):

– a signal on forward scatter (FWS), corresponding to the cell length;
– two signals on sideward scatter (SWS), corresponding to the internal structure, in

high and low sensitivity levels (SWSHS, SWSLS);
– two signals on red fluorescence (FLR),λem> 620nm, in high and low sensitivity

(FLR HS, FLR LS), which characterize chlorophyll pigments;



Fig. 3.Signals acquisition with a flow cytometer, image extracted from CytoBuoy’s site

– a signal on orange fluorescence (FLO), 565nm< λem< 592nm, in low sentitiv-
ity(FLO HS);

– two signals on yellow fluorescence (FLY), 545nm< λem< 570nm, in high and low
sensitivity (FLY HS, FLY LS).

These signals are composed of voltage measures (mV), and their sampling period
was here chosen to correspond to 0.5µ-meter displacement of the water flow. Conse-
quently, the longer the cell is, the higher the number of sampled measures is, and the
time axis can be interpreted as a spatial length axis.

Phytoplanktonic species identification is a hard task, thatis the reason why all these
signals are used to make the particles characterization as complete as possible. Each
particle of our experiment is consequently characterized by a 8D signal.

Derived features. Classification process requires an efficient characterization of the
particles. This may be obtained either directly from the rawnD signals, or from some
features which synthesize information of these signals. 4 attributes per signal are then
extracted: length, height, integral, and number of peaks. Each Phytoplankton cell may
then be described by 32 derived features.

Description of the studied Phytoplankton cells.The dataset is issued from a unique
culture cells sample, whose particles belong to 7 distinct Phytoplanktonic species:Cha-
etoceros socialis, Emiliania Huxleyi, Lauderia annulata, Leptocylindrus minimus, Pha-
eocystis globosa, Skeletonema costatumandThalassiosira rotula.

Each species is equally represented by 100 Phytoplanktoniccells, which were la-
belled by biologists using a microscope [3].

Figures in Table 1 show some signal samples of speciesLauderia annulataand
Emiliania huxleyi. For the first species, three individuals are selected: two very close,
and an outlier.

Despite a high similarity between the profiles, intra-species variability can be quite
important. In particular rising and falling edges ofLauderia annulatasignals are not
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Table 1.nD signals describing two species

exactly synchronous. The curves SWSHS (the highest ones) ofL. annulataspecies
show a size variability (L. annulata10: 45µm, L. annulata11: 55µmandL. annulata
5: 90µm), as well as a variability of the nucleus position (at the center of the cell forL.
annulata10-11, but clearly left shifted forL. annulata5). In the case of FLRED HS
signals (the second highest ones), we can also see differences in spatial shifts and in in-
tensity levels betweenL. annulata5 and the two others: this is due to different positions
and different numbers of chloroplasts in cells (cf. Fig. 3).

Last exampleE. huxleyiis an extreme case showing how similar cytometric curves
of distinct species can be. However the length of this particle is clearly smaller in this
particular case.

3.2 Applied classification methods

Two main classification approaches are experimented:

1. a features-based or ”absolute” approach, which consistsin applying classical clas-
sifiers on the 32 features extracted from the signals;

2. a dissimilarity-based or ”relative” approach, which consists in comparing each new
Phytoplanktonic cell to a set of labelled cells, directly from its 8 signals, thanks to
a DTW variant; the distance or dissimilarity vector is then used as a feature vector,
and processed by a classical classifier.



The classifiers are selected among the commonly used:

– k-nearest-neighbor withk = 1 (1-NN);
– multi-layer perceptron (MLP), with 1 hidden layer, and the sigmoid transfer func-

tion;
– support-vector machine (SVM1), with a first order polynomial kernel;
– support-vector machine (SVM2), with a fourst order polynomial kernel.

DTW-MLP structure used is 175/91/7 neurons (input/hidden/output-layer), features-
MLP structure is 32/19/7 neurons. DTW-SVM and features-SVMmethod used around
300 support vectors in each training fold.

Distance and dissimilarity measures are issued from all theDTW variants previ-
ously described:

– first, classical DTW (a mean-distance) versus the proposed DTW variant (dissimila-
rity-based);

– then, three neighborhood restrictions were compared: ”linear”, ”p-restricted” (with
percentagep = 10% thenp = 20%) and the ”no-restricted” variants.

In order to better estimate the variability of the recognition scores, 4-fold cross-
validation is used: the dataset of 100×7 Phytoplanktonic cells is divided into 4 subsets
of 25×7 cells, which are successively used as training fold while the union of the three
other subsets is used as a test set.

3.3 Classification results

Features-based classifiers.Table 2 shows the recognition scores of the features-based
classification methods. The multi-layer perceptron obtains the best scores (mean score
is 95.6%) as well as the least standard deviation (1.1%).

Training fold Fold 1 Fold 2 Fold 3 Fold 4 Mean Std
1-NN 93.7 90.2 93.7 92.5 92.5 1.7
MLP 96.9 94.8 96 94.8 95.6 1.1
SVM1 90 87.4 91 92.5 90.2 2.2
SVM2 95 91.2 90 93.9 92.5 2.4

Table 2.Recognition rates (%) of the features-based classifiers

Distance-based and dissimilarity-based classifiers.We now focus on the second ap-
proach, based upon the distance and dissimilarity measures. First, classifier 1-NN is
used to measure the impact of the neighborhood restriction and the impact of the DTW
measure, either classical, or the one proposed. Table 3 shows that the dissimilarity mea-
sure reaches higher score than the classical distance measure. This may be explained



by the fact that matched pairs can have extremely high distance, penalizing the final
mean-distance cost; but their dissimilarity degree is necessarily bounded by 1: a single
badly matched pair can not extremely affect the final mean-dissimilarity cost.

Then, it appears that features-based classifiers scores aresurpassed by the dissimila-
rity-based approaches. This tends to prove that the choosenDTW approach is relevant
for this application.

Training folds Fold 1 Fold 2 Fold 3 Fold 4 Mean Std
Classical distance-based DTW
linear 93.3 90.8 94.2 92.1 92.6 1.4
10%-restricted 94.8 92.5 94.8 93.7 94.0 1.0
20%-restricted 96.3 92.9 94.6 93.1 94.2 1.5
no-restricted 96.1 90.2 93.5 91.8 92.9 2.5
Proposed dissimilarity-based DTW
linear 97.7 94.8 95.0 96.1 95.9 1.3
10%-restricted 97.9 94.6 96.0 96.1 96.1 1.3
20%-restricted 98.2 95.4 96.1 97.1 96.7 1.2
no-restricted 97.3 95.6 96.0 96.9 96.4 0.8

Table 3.Recognition rates (%) of the dissimilarity-based 1-NN classifiers

Then, as expected, the best neighborhood restriction appears to be obtained with a
moderate window:p = 10%. Consequently, following comparisons between different
classical classifiers are conducted using the 10%-restricted DTW algorithms (cf. Table
4).

Training fold Fold 1 Fold 2 Fold 3 Fold 4 Mean Std
1-NN 98.2 95.4 96.1 97.1 96.7 1.3
MLP 98.2 97.3 97.3 96.7 97.3 0.7
SVM1 98.8 95.6 95.6 96.1 96.5 1.6
SVM2 92.3 93.5 93.3 92.9 93 0.6

Table 4.Recognition rates (%) of the 10%-restricted dissimilarity-based classifiers

Table 4 finally shows that the multi-layer perceptron is ableto reach the highest
mean score (97.3%) , with a very low standard deviation (0.7%).

4 Conclusion

In this paper, we proposed a conjoint dissimilarity [0,1]-measure for signals, based upon
their shape. Such a bounded measure makes the interpretation by human users easier,
and it can also be more relevant than a simple distance in someapplications like the



one presented. This dissimilarity measure was adapted to multidimensional signals, by
equally weighting each dimension.

The proposed measure was applied to the automatic classification of Phytoplank-
tonic cells, which appears to be an innovative method: only few automatic species
recognitions have yet been proposed. The experiment was performed on a labelled set
of 700 Phytoplankton cells, with 100 cells per species. The quality of the obtained rates
(which reach 97.2%) tends to show the relevance of the proposed dissimilarity measure,
first in comparison with more classical distortion measures, then in comparison with a
feature-based characterization.

These promising results encourage some future works, like the use of other dis-
tances (for instance in order to weight the distinct signal dimensions), or like the fusion
of this distortion dissimilarity with some other dissimilarity measures (for instance, a
duration dissimilarity).
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