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Abstract. The paper describes a classification method of multidimensional sig-
nals, based upon a dissimilarity measure between signals. Each newisigna
compared to some reference signals through a conjoint dynamic tingngar
algorithm of their time features series, of which proposed cost functies gut

a normalized dissimilarity degree. The classification then consists in pirggen
these degrees to a classifier, like k-NN, MLP or SVM. This recognitioeseh

is applied to the automatic estimation of the Phytoplanktonic composition of a
marine sample from cytometric curves. At present, biologists are usedin-

ual classification of signals, that consists in a visual comparison of playtio-
tonic profiles. The proposed method consequently provides an aut@natiss,

as well as a similar comparison of the signal shapes. We show the retesén
the proposed dissimilarity-based classifier in this environmental applicaitich
compare it with classifiers based on the classical DTW cost-function land a
with features-based classifiers.

1 Introduction

The survey of marine ecosystem is a major current concerarisaciety since its im-
pact is essential for many domains: ecology (biodivergitgduction, survey), climate,
economy (tourism, resources control, transport). In 2@Gsctive DCE adopted by
the European Parliament [1] defines the Phytoplankton asladic factor for marine
quality assessment. In this context, we propose an autouligimilarity-based classi-
fication method designed to assess the marine water qugliBhiptoplankton species
classification and counting.

The available signals are fluorescence and scatter panastaies of each parti-
cle detected by a flow cytometer in a marine sample. So oudgmobomes down to
the classification of multidimensional signals, whose shapfile is class-specific. Up
to date, this classification is made by visual comparisorhefdbtained profiles and
references ones, or by the inverted microscope method][2]f& major difficulty of



discrimination task is that Phytoplankton is a live vegsfacies. So its internal struc-
ture (pigments, size, nucleus position) varies accordiritstbelonging group but also
and above all according to its physiological conditiong(lifycle, cell or colony) and its
environment [4][5]. To make a Phytoplankton classifier sgstobust to these variabil-
ities, it appears relevant to use an elastic measure to aentywa signal profiles. So
our approach is based on a classical elastic matching fra&kmeSand Chiba (Dynamic
Time Warping DTW [6]). This method was largely tested, gilif for speech recogni-
tion (comparison of 1D time-frequency amplitude pattersjor handwritten pattern
recognition (1D spatial matching) [7].

In order to get a more understandable qualitative measiangplesand comprehen-

sible for any biologist, we adapt the matching cost of thigodathm so as to get a
[0,1]-normalized dissimilarity degree that deals with multidimsional time signals.
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Fig. 1. Scheme of the recognition system for Phytoplanctonic cells

Figure 1 presents the global scheme of the recognitionsystsed on a dissimilar-
ity measure applied to Phytoplankton characterizatiois. ¢omposed of two classical

parts:

1. afeature-like extraction module which computes for thienown cell a dissimilar-
ity vector in relation to some reference cells;

2. a standard classifier which takes in entry this vector avebgn output the recog-
nized species name.

Next section describes the proposed accomodation of Saikb€liba’s algorithm
to get a [0,1]-dissimilarity degree between nD signals.tiSec3 presents the exper-
imentation protocol and results that show the efficiencyhef $ystem with different
classifiers. Different variants are tested and compareviith features-based classi-
fiers, then with classical DTW algorithm, in term of recogmitrate.



2 Dissimilarity measure for multidimensional signals by cajoint
elastic matching

2.1 Comparison of two 1D signals by the classical methoBynamic Time
Warping

Dynamic Time WarpingDTW) method proposed by Sakoe and Chiba [6] gives a dis-
tance measure for two time series, whose lengths are nosserdy equal. This mea-
sure represents the quantity of geometrical distortiomleddo match both curves, re-
gardless of some time distortions.

More precisely, the method matches the points of both sigraald defines their
matching cost as the mean-distance between the pairedsp&iot example, in the
ideal case where all paired points are identical, the magchs perfect, and the cost
is consequently zero. The softness of the algorithm conoss fits ability to pair some
points time shifted, with a cost equal to zero.

LetX = {(x),i=1,...,n} andY = {(yj),] = 1,...,ny} be the two signals to be
compared, with andj their time index, anah, andny their respective length. We first
consider monodimensional signals: each vajuer y; belongs tal.

The algorithm builds a matching = {(i, jk),k=1,...,nx} between the points of
signalsX andY, according to some time conditions. The resulting matcisrdgfined
as the one minimizing the following weighted mean dista@deetween paired points,
based upon some distang@nd a weight vectow:

Nk d(x; . K .
C(X.Y,PW) = 22 gkﬁk,yjk) w(k) _ Dist(X,Y.P\W)
2iza ¥ Seawik)
Selected conditions of the pairing in this DTW variant are fitllowing:

1)

1. End-Points conditions: first (and last) points of botmsig are paired(1,1) € P
(and(ny,ny) € P);

2. Continuity conditions: all points are matched,;

3. Monotonicity conditions: pairs are time ordergd:; < ix andjx_1 < jk.

According to these conditions, each possible pairing masepeesented as a path
in the bidimensional space of the pafi§, j),i=1,...ny, j =1,...ny}, i.e. the full set
of the possible pairs of points &f andY. The algorithm then backtracks the optimal
matching, going from initial paif1, 1) to final pair(ny, ny) (condition 1) that minimizes
the cosC.

Sakoe and Chiba showed that c@stan only be optimized by dynamic program-
ming if denominatogﬂkzlw(k) does not depend from matchiRgThis may be obtained
by letting the weigth sum equal tg + ny, ny or ny, for example.

Considering that the weights verify this condition, thenagmimal path is a path
which minimizes the accumulated distarigist.

If the optimal paths leading to paifs—1, j), (i, j —1) and(i — 1, j — 1) are supposed
to be known, then the optimal path leading to p@irj) may easily be defined as the
one of the three previous paths whose cost is minimal, fatbiy pair(i, j). Its cost
Dist may be computed in the same way. Now, the optimal paths toaie(d,...) and



(...,1) are known thanks to conditions 2 and 3. Then, a recursivenigdtion is used
to compute the path corresponding to the best matching keetwignalsX andY, as
well as its cosDist. In practice, it consists in sequentially computing thg ny)-sized
matrix of costsDist(i, j), which measures the minimal cost of the path leading to pair
(i, j). The final cost is consequently and directly obtained in éise élemengny, ny) of
the matrix.

Here is given the part of the algorithm DTW (cf. Algorithm 1)osving a quick
computation of cost of the optimal path. The path itself may then be retrievelbiol
ing the way the least cost was computed, from last pgimy) to first pair(1,1). This
is generally used to normalize final cdsist(ny,ny), so as to get the mean distortion
measure by matched pair.

In order to get the accumulated distariist minimization equivalent to the co6t
minimization, the weigths are defined according to siimetricsolution proposed by
Sako and Chiba. Ldiy, j) be thek-th pair of matching®:

- wW(k) =2,ifk=1orif (ix-1), jx-1)) = (ik—1, jk—1);
— w(k) =1, otherwise.

Theny X, w(k) = ny+ny, does not depend d?, and optimizingDist(ny, ny) makes
C optimized too.

Algorithm 1 DTW algorithm computing the accumulated distance of the inesching
Dist(1,1) = 2.d(x;,Yj)

foralli=2,...,nxdo
Dist(i,1) = Dist(i — 1,1) + d (i, y1)
end for

forall j=2,...,nydo
Dist(1, j) = Dist(1, j — 1) +d(x¢,yj)
end for
foralli=2,...,nxdo
forall j=2,...,nydo
Dist(i, j) = min{Dist(i — 1,1) +d(x;,y;), Dist(i, j — 1) + d (%, yj), ...
...,Dist(i—l,j71)+2.d(xi,yj)}
end for
end for

return Dist(ny, ny)

2.2 Neighborhood restrictions of DTW algorithm

The previous version of DTW algorithm allows extremely suofitchings without pen-
alty: the first point of a signal may indeed be matched to thegaint of the other one.
This is an extreme distortion, that may be avoided by namgwhe possible matched
points thanks to a limited time window.



The strictest restriction consists in making each poinheflongest signal - denoted
X - possibly paired to a unique point of the other signal - ded¥t the time nearest,
once the length of the curves are fitted. This is a "linear” DTW

e ) |

whereE denotes the round function.

In this particular case, the distortion is global: the onaclHits the duration of
both signals. No optimization is required to get the disbortost.

In order to allow local time distortion, a less restrictiversion could be prefered,
which limits the matchings through a time window. Its sizeyrba defined as a ratip
of the whole duration:

v(i,j) e (,)) e{(, ji)si € {L....n}, i € [ii — PNy, i+ Py}, ®)
wherej;* denotes the indice defined in the previous linear matching.

2.3 Dissimilarity measure of positive signals

The cost function provided by DTW is a relative measure, Whian not be easily
interpreted by itself: it is a mean distance, which depenushe intensities of both
signals. In order to make the response similar to the one afh@ah expert, we prefer
a bounded measure of dissimilarity, between 0 and 1. We thepope to replace the
distanced with a dissimilaritys, built as a ratio of distances:
d(%i,,Yj,)
S(Xik7yjk) = max{d(xik}(0>7jclj<(yjkso)} . (4)
In order to make this ratio consistent, we suppose the sigondde positive, otherwise
the dissimilarity degree could exceed 1.
Using this measure, the cost functi@hbecomes a mean dissimilarity between
paired points, and consequently a global dissimilarity sneafor signals.

2.4 Conjoint elastic matching of nD signals

We now consider nD signal¥ = {(x),i = 1,...,n} and¥ = {(yj),j = 1,...,ny},
whose all time measures= {(xc),c=1,...,nc} andy; = {(yic),c=1,...,nc} belong
to (O1)™. To sum up, each nD signal consistagimonodimensional positive signals,
identically sampled.

In the classical DTW, we simply consider a Manhattan distaneasure:

d(%.5;) = z:dLl(xic,yic), (5)

with di, theL;-distance. The choice consists in accumulating the distorheasures
over then; curves.

In our dissimilarity version of DTW, we accumulate dissianity measures instead
of L;-distances for the. positive curves, and we then normalize the result:

Nc

s(%i,Yj) :n—lc _1S(Xac,yic). (6)



2.5 Matching visualizations

In order to visualize the quality of DTW matching for two 1Dpsals, both signals
are usually plotted on the same figure, while paired poiréscannected with a seg-
ment. The weakness of this technique is that it does not bedgdess the dissimilarity
between the signals.

Then, we propose an other way to visualize both sigaindY. Each point of
pair (i, jk),k € {1,...,n¢} of the optimal matching is represented by a bidimensional
point X, (or Yk). The set of pairs is totally ordered, then X-axis valuesahts X, and
Yk are set tk, following this time order. Y-axis values simply are the 1[@a&sures,
andy;,, then:

K= (k%) 3 Y= (K Yj,)- (7)

Plotting points this way makes easier the perception of thiamces or dissimilarities
accumulated over the pairs Bf because they are directly measured along the Y-axis.
Moreover time distortions are visualized. Note that we whetted lines to differentiate
the time distortions from any initial constant part of thevas.

Figure 2 shows the comparison of two artificial 1D curves adiog to the variants
of DTW algorithm previously described; results are presérats follows:

— two columns: left, Sakoe and Chibas’s original algorithight, our variant with a
bounded dissimilarity degree;

— three couples of rows, for the different ways of limiting tieighborhood: first the
"linear”, then the 'p-restricted”, and finally the "no-restricted” variant. Riéts are
presented in the classical way, then in the way we propose.

Matchings visualized in Figure 2 show how similar both typéslgorithms are,
either distance or dissimilarity oriented: the only sigrafive difference appears in the
costs, normalized in [0,1]. Furthermore this example ttié role of the neighborhood
restriction, that allows limitation of the time distortign

3 Application to the Phytoplanktonic species identificatio

3.1 Data presentation

ND signals acquisition. In this study, nD signals were gathered in the LOG laboratory
from different phytoplanktonic species living in Easterha@nel, with a CytoSense
flow cytometer (CytoBuof), and labelled by biologists [3], once having them isolated
from the natural environment.

Flow cytometry is a technique used to characterize indaficharticles (cells or
bacteria) drived by a liquid flow at high speed in front of aelaght (cf. Figure 3).
Different signals either optical or physical are providémtward scatter (which reflects
the particle length), sideward scatter (which is more ddpahon the particle internal
structure) and several wavelengths of fluorescence (wheplertd upon the type of its
photosynthetic pigments) measures.

1 Laboratoire d’Oéanologie et de Eosciences, UMR 818%ttp://log. univ-littoral .fr
2 Cytobuoy systemht t p: / / www. cyt obuoy. com



Classical DTW
2000 T T T T T 2000

1000

Linear

2000 2000
§ 10m J 10
£
J A
0 T T . . . . h ] 0
0 5 0 15 0 B 30 B4 0 5 10 15 0 % kil B4
Cost=474.234 Dissimilarity = 0.52

2000 2000

1000 1000

Restricted

2000 2000

1000 J 1000
SN

n n . .
0 5 10 5 2 % N B N &
Cost=21897

2000 T T T T 2000

Restricted

Not—restricted

1000

3
200 0
@
9
I
31000 / \ 1000
0 5 10 15 2 2% 3 % N0 H KN 0 5 10 15 2 2 30 % N &H KN
Cost=69.99%4 Dissimilarity = 0.17

Fig. 2. Different DTW variants applied to two artificial 1D signals

More precisely, in the used signals library, each detectetigle is described by 8
monodimensional raw signals issued from the flow cytometéientical experimental
conditions (same sampling rates, same detection threstioldt

— asignal on forward scatter (FWS), corresponding to the eatith;

— two signals on sideward scatter (SWS), corresponding tontteerial structure, in
high and low sensitivity levels (SWHS, SWSLS);

— two signals on red fluorescence (FLREmM> 620nm in high and low sensitivity
(FLR_HS, FLRLS), which characterize chlorophyll pigments;
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Fig. 3. Signals acquisition with a flow cytometer, image extracted from CytoBudtg's s

— a signal on orange fluorescence (FLO), BBBE< Aem< 592nm, in low sentitiv-
ity(FLO_HS);

— two signals on yellow fluorescence (FLY), 5#8< Aem< 570nm, in high and low
sensitivity (FLY_HS, FLY_LS).

These signals are composed of voltage measures (mV), aincamepling period
was here chosen to correspond toBmbeter displacement of the water flow. Conse-
quently, the longer the cell is, the higher the number of dachmeasures is, and the
time axis can be interpreted as a spatial length axis.

Phytoplanktonic species identification is a hard task,ithidte reason why all these
signals are used to make the particles characterizatioomraplete as possible. Each
particle of our experiment is consequently characterized 8D signal.

Derived features. Classification process requires an efficient charactévizatf the
particles. This may be obtained either directly from the rdwsignals, or from some
features which synthesize information of these signaldtribates per signal are then
extracted: length, height, integral, and number of peakshBPhytoplankton cell may
then be described by 32 derived features.

Description of the studied Phytoplankton cells. The dataset is issued from a unique
culture cells sample, whose particles belong to 7 distihgtéplanktonic specie€ha-
etoceros socialiEEmiliania Huxleyj Lauderia annulataLeptocylindrus minimy$’ha-
eocystis globoseéBkeletonema costatuamd Thalassiosira rotula

Each species is equally represented by 100 Phytoplanktetii; which were la-
belled by biologists using a microscope [3].

Figures in Table 1 show some signal samples of spdcesieria annulataand
Emiliania huxleyi For the first species, three individuals are selected: g tlose,
and an outlier.

Despite a high similarity between the profiles, intra-spsdaiariability can be quite
important. In particular rising and falling edges ldduderia annulatasignals are not
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Table 1.nD signals describing two species

exactly synchronous. The curves SWAS (the highest ones) df. annulataspecies
show a size variabilityl(. annulatal0: 45um L. annulatall: 55umandL. annulata
5:90um), as well as a variability of the nucleus position (at theteeof the cell forl.
annulatal0-11, but clearly left shifted fot. annulata5). In the case of FIRED_HS
signals (the second highest ones), we can also see difesr@mspatial shifts and in in-
tensity levels betweeh. annulatab and the two others: this is due to different positions
and different numbers of chloroplasts in cells (cf. Fig. 3).

Last exampleE. huxleyiis an extreme case showing how similar cytometric curves
of distinct species can be. However the length of this partgclearly smaller in this
particular case.

3.2 Applied classification methods
Two main classification approaches are experimented:

1. afeatures-based or "absolute” approach, which consistgplying classical clas-
sifiers on the 32 features extracted from the signals;

2. adissimilarity-based or "relative” approach, which sists in comparing each new
Phytoplanktonic cell to a set of labelled cells, directlgrr its 8 signals, thanks to
a DTW variant; the distance or dissimilarity vector is thesed as a feature vector,
and processed by a classical classifier.



The classifiers are selected among the commonly used:

— k-nearest-neighbor witk = 1 (1-NN);

— multi-layer perceptron (MLP), with 1 hidden layer, and thgnsoid transfer func-
tion;

— support-vector machine (SVM1), with a first order polynokisrnel;

— support-vector machine (SVM2), with a fourst order polynairkernel.

DTW-MLP structure used is 175/91/7 neurons (input/hiddetput-layer), features-
MLP structure is 32/19/7 neurons. DTW-SVM and features-Svikthod used around
300 support vectors in each training fold.

Distance and dissimilarity measures are issued from alDRé/ variants previ-
ously described:

— first, classical DTW (a mean-distance) versus the propo3atl iariant (dissimila-
rity-based);

— then, three neighborhood restrictions were comparecedlit) "p-restricted” (with
percentage = 10% thenp = 20%) and the "no-restricted” variants.

In order to better estimate the variability of the recogmitiscores, 4-fold cross-
validation is used: the dataset of 100 Phytoplanktonic cells is divided into 4 subsets
of 25x 7 cells, which are successively used as training fold whigeunion of the three
other subsets is used as a test set.

3.3 Classification results

Features-based classifiersTable 2 shows the recognition scores of the features-based
classification methods. The multi-layer perceptron olstélire best scores (mean score
is 95.6%) as well as the least standard deviation (1.1%).

Training fold |Fold 1 Fold 2 Fold 3Fold 4Mean|Std
1-NN 9371902 | 937|925 |925/|1.7
MLP 969|948 | 96 | 948 |95.6/(1.1
SVM1 90 (874 | 91 | 925(90.2|2.2
SVM2 95 | 912 | 90 | 939 |92.5(2.4

Table 2. Recognition rates (%) of the features-based classifiers

Distance-based and dissimilarity-based classifierdVe now focus on the second ap-
proach, based upon the distance and dissimilarity measkimss, classifier 1-NN is
used to measure the impact of the neighborhood restrictidritee impact of the DTW
measure, either classical, or the one proposed. Table 3Bshaithe dissimilarity mea-
sure reaches higher score than the classical distance rae@sis may be explained



by the fact that matched pairs can have extremely high distgmenalizing the final
mean-distance cost; but their dissimilarity degree is s&maly bounded by 1: a single
badly matched pair can not extremely affect the final meashdilarity cost.

Then, it appears that features-based classifiers scorssraassed by the dissimila-
rity-based approaches. This tends to prove that the chdd$@v approach is relevant
for this application.

Training folds[[Fold 1]Fold 2Fold 3Fold 4[Mean[Std
Classical distance-based DTW

linear 93.3|90.8|94.2| 92.1 92.6(1.4
10%-restricteq| 94.8 | 92.5| 94.8 | 93.7 || 94.0|1.0
20%-restricteq| 96.3| 92.9| 94.6| 93.1|| 94.2 (1.5
no-restricted || 96.1| 90.2| 93.5| 91.8 | 92.9|2.5
Proposed dissimilarity-based DTW
linear 97.7| 94.8| 95.0| 96.1 (| 95.9(1.3
10%-restricted 97.9| 94.6 | 96.0| 96.1| 96.1|1.3
20%-restricted] 98.2 | 95.4| 96.1 | 97.1 || 96.7 |1.2
no-restricted || 97.3| 95.6| 96.0 | 96.9| 96.4|0.8
Table 3.Recognition rates (%) of the dissimilarity-based 1-NN classifiers

Then, as expected, the best neighborhood restriction eppeae obtained with a
moderate windowp = 10%. Consequently, following comparisons between differe
classical classifiers are conducted using the 10%-resdridfW algorithms (cf. Table
4).

Training fold |Fold 1 Fold 2 Fold 3 Fold 4Mean|Std
1-NN 982|954 (961|971 |96.7|1.3
MLP 982 | 973|973 | 96.7 | 97.3|0.7
SVM1 988 | 956 | 956 | 961 | 96.5|1.6
SVM2 923 935|933 (929 | 93 |0.6

Table 4. Recognition rates (%) of the 10%-restricted dissimilarity-based classifiers

Table 4 finally shows that the multi-layer perceptron is ableeach the highest
mean score (97.3%) , with a very low standard deviation (.7%

4 Conclusion

In this paper, we proposed a conjoint dissimilarity [0,1¢amure for signals, based upon
their shape. Such a bounded measure makes the interpndgtizuman users easier,
and it can also be more relevant than a simple distance in sqpigations like the



one presented. This dissimilarity measure was adapted ttidimensional signals, by
equally weighting each dimension.

The proposed measure was applied to the automatic clasisifieczf Phytoplank-
tonic cells, which appears to be an innovative method: oaly &utomatic species
recognitions have yet been proposed. The experiment wésrped on a labelled set
of 700 Phytoplankton cells, with 100 cells per species. Thedity of the obtained rates
(which reach 97.2%) tends to show the relevance of the pegpdissimilarity measure,
first in comparison with more classical distortion measuttesn in comparison with a
feature-based characterization.

These promising results encourage some future works, ligeuse of other dis-
tances (for instance in order to weight the distinct sigmaleshsions), or like the fusion
of this distortion dissimilarity with some other dissimity measures (for instance, a
duration dissimilarity).
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